Spring Semester 2007

ELEG 5763 Advanced Electromagnetic Scattering and Transmission

MWF 10:30-11:20pm, MEEG 288, Dr. Magda El-Shenawee, Office # 3176, Tel 5-6582

Instructor: Dr Magda El-Shenawee

Email: magda@uark.edu

Office hours: MWF 2:30-3:30pm

Text Book: Carl T.A. Johnk, Engineering Electromagnetic Fields and Waves, 1988, Wiley,

ISBN 0-471-09879-5

Grading Policy

Mid Term Exam 30 points (in class)

Project I 35 (25 solution + 10 presentation in class using power point) Final Project II 35 (25 solution + 10 presentation in class using power point)

A: 90-100 %, B: 80-89 %, C: 70-79 %, D: 60-69 %, F: 0-59 %

Attendance

Attendance is expected from all students

Mid Term Exam

No make up exams unless it is an emergency.

Project Deadlines

Project deadlines are very strict.

Lecture	Topic
Review Topics	
-	• Dynamic Maxwell's equations
	• Plane wave propagation
Topic 1 (Chapter 6): W	ave Reflection and Transmission at Plane Boundaries
	• Review of Maxwell Equations and Boundary Conditions Boundary Value Problems
	• Reflection from Plane conductor at normal incidence
	Two Region reflection and Transmission
	• Normal Incidence for more than two regions
	• Solution using reflection coefficient and wave impedance
	 Reflection and Transmission at Oblique Incidence
Topic 2 (Chapter 7): Th	 Poynting Theorem and Electromagnetic Power The Theorem of Poynting Time Average Poynting Vector and Power
	Mid Term Exam (open book)
Topic 3 (Chapter 8): Mo	ode Theory of Waveguides
	• Maxwell's relations when fields have $\exp(jwt)$ dependence
	• TE, TM and TEM mode relationships
	• TM mode solutions of rectangular waveguides
	• TE mode solution of rectangular waveguides
	Dispersion in hollow waveguides
	• Wall loss attenuation in hollow waveguides
	Project I (to cover Topics 1-3)
	Introduction to Computational EM book chapters will be needed based on the Instructor's guidance